Difference between revisions of "User:Jon Awbrey/SYMBOL"

MyWikiBiz, Author Your Legacy — Thursday January 09, 2025
Jump to navigationJump to search
Line 3: Line 3:
 
* [http://meta.wikimedia.org/wiki/Help:Displaying_a_formula Mathematical formulas]
 
* [http://meta.wikimedia.org/wiki/Help:Displaying_a_formula Mathematical formulas]
 
* [http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols Mathematical symbols]
 
* [http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols Mathematical symbols]
 +
 +
==Mathematical Symbols==
 +
 +
This page is a quick reference for the "standard" mathematical symbols in [[HTML]] that should work on most browsers, and is intended mainly for people editing mathematical articles on Wikipedia.
 +
 +
*'''Numbers:''' {{unicode|¼ ½ ¾ ¹ ² ³}} ¼ ½ ¾ ¹ ² ³
 +
*'''Analysis:''' {{unicode|∂ ∫ ∑ ∏ √ ∞ ∇ ℘ ℑ ℜ}} ∂ ∫ ∑ ∏ √ ∞ ∇ ℘ ℑ ℜ
 +
*'''Arrows:''' {{unicode|← ↓ → ↑ ↔ ↵ ⇐ ⇓ ⇒ ⇑ ⇔}} ← ↓ → ↑ ↔ ↵ ⇐ ⇓ ⇒ ⇑ ⇔
 +
*'''Logic:''' {{unicode|¬ ∧ ∨ ∃ ∀}} ¬ ∧ ∨ ∃ ∀
 +
*'''Sets:''' {{unicode|∈ ∉ ∋ ∅ ⊆ ⊇ ⊃ ⊂ ⊄ ∪ ∩ ℵ}} ∈ ∉ ∋ ∅ ⊆ ⊇ ⊃ ⊂ ⊄ ∪ ∩ ℵ
 +
*'''Relations:''' {{unicode|≠ ≤ ≥ < > ≡ ≅ ≈ ∝}} ≠ ≤ ≥ < > ≡ ≅ ≈ ∝
 +
*'''Binary operations:''' {{unicode|± − × ÷ ⁄ ⊥ ⊕ ⊗ ∗}} ± − × ÷ ⁄ ⊥ ⊕ ⊗ ∗
 +
*'''Delimiters:''' {{unicode|⌈ ⌉ ⌊ ⌋ ⟨ ⟩ « »}} ⌈ ⌉ ⌊⌋ ⟨ ⟩ « »
 +
*'''Miscellaneous:''' {{unicode|† ¦ ∠ ∴ ◊ • ♠ ♣ ♥ ♦}}  † ¦ ∠ ∴ ◊ • ♠ ♣ ♥ ♦
 +
*'''Punctuation:''' {{unicode|′ ″ ‾ ˆ ° ⋅ · … – —}} ′ ″ ‾ ˆ ° ⋅ · … – —
 +
*'''Spacing:''' thin ( ), n-width ( ), m-width ( ), and non-breaking spaces ( ).        
 +
*'''Greek:''' α β γ Α Β Γ etc. α β γ Α Β Γ etc.
 +
*'''Unicode:''' ⊢ (for example) gives the character ⊢ with [[unicode]] number x22A2 (hexadecimal). Warning: many of the more obscure unicode characters do not yet work on all browsers.
 +
 +
It might be easier to just copy and paste the symbols instead of using them by reference.
 +
 +
==See also==
 +
*The [[List of XML and HTML character entity references]] gives a longer list of HTML characters.
 +
*[[Help:formula|TeX on Wikipedia]]
 +
*[[Table of mathematical symbols]], [[Mathematical alphanumeric symbols]]
 +
*[[MathML|Mathematical Markup Language]]
 +
 +
==External links==
 +
*[http://www.math.uh.edu/~hjm/HTML%20Tag%20List.htm List of HTML codes]
 +
*[http://www.cookwood.com/html/extras/entities.html List of HTML entity codes]
 +
*[http://www.nationalfinder.com/html/char-asc.htm Hypertext Markup Language ASCII codes]
 +
*[http://www.sql-und-xml.de/unicode-database/sm.html Huge collection of symbols], most of which probably do not work on many web browsers.
 +
*[http://www.unicode.org/charts/charindex.html Unicode character name index] — finds the Unicode number of a character.
 +
*[http://www.w3.org W3C] list of MathML characters indexed by [http://www.w3.org/TR/MathML2/bycodes.html code] or [http://www.w3.org/TR/MathML2/byalpha.html name]
 +
<br>
 +
 +
[[Category:Mathematical notation]]
  
 
==Bytes & Parses==
 
==Bytes & Parses==

Revision as of 15:15, 24 May 2007

Formula Help

Mathematical Symbols

This page is a quick reference for the "standard" mathematical symbols in HTML that should work on most browsers, and is intended mainly for people editing mathematical articles on Wikipedia.

  • Numbers: Template:Unicode &frac14; &frac12; &frac34; &sup1; &sup2; &sup3;
  • Analysis: Template:Unicode &part; &int; &sum; &prod; &radic; &infin; &nabla; &weierp; &image; &real;
  • Arrows: Template:Unicode &larr; &darr; &rarr; &uarr; &harr; &crarr; &lArr; &dArr; &rArr; &uArr; &hArr;
  • Logic: Template:Unicode &not; &and; &or; &exist; &forall;
  • Sets: Template:Unicode &isin; &notin; &ni; &empty; &sube; &supe; &sup; &sub; &nsub; &cup; &cap; &alefsym;
  • Relations: Template:Unicode &ne; &le; &ge; &lt; &gt; &equiv; &cong; &asymp; &prop;
  • Binary operations: Template:Unicode &plusmn; &minus; &times; &divide; &frasl; &perp; &oplus; &otimes; &lowast;
  • Delimiters: Template:Unicode &lceil; &rceil; &lfloor;&rfloor; &lang; &rang; &laquo; &raquo;
  • Miscellaneous: Template:Unicode &dagger; &brvbar; &ang; &there4; &loz; &bull; &spades; &clubs; &hearts; &diams;
  • Punctuation: Template:Unicode &prime; &Prime; &oline; &circ; &deg; &sdot; &middot; &hellip; &ndash; &mdash;
  • Spacing: thin ( ), n-width ( ), m-width ( ), and non-breaking spaces ( ). &thinsp; &ensp; &emsp; &nbsp;
  • Greek: α β γ Α Β Γ etc. &alpha; &beta; &gamma; &Alpha; &Beta; &Gamma; etc.
  • Unicode: &#x22A2; (for example) gives the character ⊢ with unicode number x22A2 (hexadecimal). Warning: many of the more obscure unicode characters do not yet work on all browsers.

It might be easier to just copy and paste the symbols instead of using them by reference.

See also

External links


Bytes & Parses

&middot; ·
&sdot;
&bull;
&lowast;
&loz;
{{unicode|·}} Template:Unicode
{{unicode|⋅}} Template:Unicode
{{unicode|•}} Template:Unicode
{{unicode|∗}} Template:Unicode
{{unicode|◊}} Template:Unicode
\(\cdot\) \(\cdot\)
\(\cdot\!\) \(\cdot\!\)
 
&isin;
&epsilon; ε
\(\in\) \(\in\)
\(\in\!\) \(\in\!\)
\(\epsilon\) \(\epsilon\)
\(\epsilon\!\) \(\epsilon\!\)
\(\varepsilon\) \(\varepsilon\)
\(\varepsilon\!\) \(\varepsilon\!\)
 
&eta; η
\(\eta\) \(\eta\)
\(\eta\!\) \(\eta\!\)
 
&theta; θ
\(\theta\) \(\theta\)
\(\theta\!\) \(\theta\!\)
\(\vartheta\) \(\vartheta\)
\(\vartheta\!\) \(\vartheta\!\)
 
&chi; χ
\(\chi\) \(\chi\)
\(\chi\!\) \(\chi\!\)


x = xJ = ¢(J) = J¢ = J ¢ = J¢ = J ¢

x = xJ = ¢(J) = J¢ = J ¢ = J¢ = J ¢

Display

New

W : ( [ Bn ] [ Bk ] )     ( [ Bn × Dn ] [ Bk × Dk ] ) .
Concrete type \(\epsilon\) : ( U X ) ( EU X )
Abstract type \(\epsilon\) : ( [Bn] [Bk] ) ( [Bn × Dn] [Bk] )
Concrete type W : ( U X ) ( EU dX )
Abstract type W : ( [Bn] [Bk] ) ( [Bn × Dn] [Dk] )
\(\epsilon\)F : ( EU X EX ) \(\cong\) ( [Bn × Dn] [Bk] [Bk × Dk] )
WF : ( EU dX EX ) \(\cong\) ( [Bn × Dn] [Dk] [Bk × Dk] )

Old

W : ( [ Bn ] [ Bk ] )     ( [ Bn × Dn ] [ Bk × Dk ] ) .
Concrete type \(\epsilon\) : ( U X ) ( EU X )
Abstract type \(\epsilon\) : ( [Bn] [Bk] ) ( [Bn × Dn] [Bk] )
Concrete type W : ( U X ) ( EU dX )
Abstract type W : ( [Bn] [Bk] ) ( [Bn × Dn] [Dk] )
\(\epsilon\)F : ( EU X EX ) \(\cong\) ( [Bn × Dn] [Bk] [Bk × Dk] )
WF : ( EU dX EX ) \(\cong\) ( [Bn × Dn] [Dk] [Bk × Dk] )

Epitext

Rosebud
Rosebud
Rosebud

Gallery

‹ ›

〈 〉

( )

( , )


A = {ai} = {a1, …, an}
A = 〈A〉 = 〈a1, …, an〉= {‹a1, …, an›}
A^ = (A → B)
A = [A] = [a1, …, an]


dA = {dai} = {da1, …, dan}
dA = 〈dA〉 = 〈da1, …, dan〉= {‹da1, …, dan›}
dA^ = (dA → B)
dA = [dA] = [da1, …, dan]


EA = A ∪ dA = {ai} ∪ {dai} = {a1, …, an, da1, …, dan}
EA = 〈EA〉 = 〈a1, …, an, da1, …, dan〉= {‹a1, …, an, da1, …, dan›}
EA^ = (EA → B)
EA = [EA] = [a1, …, an, da1, …, dan]


X = {xi} = {x1, …, xn}
X = 〈X〉 = 〈x1, …, xn〉= {‹x1, …, xn›}
X^ = (X → B)
X = [X] = [x1, …, xn]


dX = {dxi} = {dx1, …, dxn}
dX = 〈dX〉 = 〈dx1, …, dxn〉= {‹dx1, …, dxn›}
dX^ = (dX → B)
dX = [dX] = [dx1, …, dxn]


X = {xi} = {x1, …, xn}
X = 〈X〉 = 〈x1, …, xn〉= {‹x1, …, xn›}
X^ = (X → B)
X = [X] = [x1, …, xn]


f : Bk → B

f : Bn → B

f–1

Pow(X) = 2X

Arbitrary Bn → B X → B
Basic ¸> Bn ¸> B X ¸> B
Linear +> Bn +> B X +> B
Positive ¥> Bn ¥> B X ¥> B
Singular ××> Bn ××> B X ××> B

The linear propositions, {hom : Bn → B} = (Bn +> B), may be expressed as sums of the following form:

\[\textstyle \sum_{i=1}^n e_i = e_1 + \ldots + e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 0.\]

The positive propositions, {pos : Bn → B} = (Bn ¥> B), may be expressed as products of the following form:

\[\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 1.\]

The singular propositions, {x : Bn → B} = (Bn ××> B), may be expressed as products of the following form:

\[\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = (a_i) = \lnot a_i.\]

I = {1, …, n}.

JI

J ⊆ I

AJ

AJ

lJ : Bk → B

\(\ell_J : \mathbb{B}^k \to \mathbb{B}\)

θ : (Kn → K) → K

\(\theta\) : (Kn → K) → K

\(\theta\!\) : (Kn → K) → K

\(\vartheta\) : (Kn → K) → K

\(\vartheta\!\) : (Kn → K) → K

\(\chi\!\) : X → \(\bigcup_x \ \chi_x\!\)

\(\chi\!\) : Kn → ((Kn → K) → K)

\(\chi\!\) : (Kn → K) → (Kn → K)

\(\cong\)

\(\lceil x \rceil\)

xi(x) χ(xLi) \(\lceil x \in L_i \rceil\) Li(x)
xi(x) \(\chi (x \in L_i)\) \(\lceil x \in L_i \rceil\) Li(x)
‹0, 0, 0› ‹0, 0, 0›
‹0, 0, 1› ‹0, 0, 1›
‹0, 1, 0› ‹0, 1, 0›
‹0, 1, 1› ‹0, 1, 1›
‹1, 0, 0› ‹1, 0, 0›
‹1, 0, 1› ‹1, 0, 1›
‹1, 1, 0› ‹1, 1, 0›
‹1, 1, 1› ‹1, 1, 1›