Difference between revisions of "Directory:Jon Awbrey/Papers/Inquiry Driven Systems : Appendices"
MyWikiBiz, Author Your Legacy — Friday November 29, 2024
Jump to navigationJump to searchJon Awbrey (talk | contribs) (add [appendices] to navigation bars) |
Jon Awbrey (talk | contribs) (→Appendices: + Tables) |
||
Line 15: | Line 15: | ||
==Appendices== | ==Appendices== | ||
+ | ===Logical Translation Rule 1=== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" width="100%" | ||
+ | |- style="height:48px; text-align:right" | ||
+ | | width="98%" | <math>\text{Logical Translation Rule 1}\!</math> | ||
+ | | width="2%" | | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" width="100%" | ||
+ | |- style="height:48px" | ||
+ | | width="2%" style="border-top:1px solid black" | | ||
+ | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> | ||
+ | | width="80%" style="border-top:1px solid black" | | ||
+ | <math>s ~\text{is a sentence about things in the universe X}</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{and}\!</math> | ||
+ | | <math>p ~\text{is a proposition} ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{such that:}\!</math> | ||
+ | | | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{L1a.}\!</math> | ||
+ | | <math>\downharpoonleft s \downharpoonright ~=~ p</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{then}\!</math> | ||
+ | | <math>\text{the following equations hold:}\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" style="text-align:center" width="100%" | ||
+ | |- style="height:52px" | ||
+ | | width="2%" style="border-top:1px solid black" | | ||
+ | | width="18%" style="border-top:1px solid black" align="left" | <math>\text{L1b}_{00}.\!</math> | ||
+ | | width="20%" style="border-top:1px solid black" | | ||
+ | <math>\downharpoonleft \operatorname{false} \downharpoonright</math> | ||
+ | | width="5%" style="border-top:1px solid black" | <math>=\!</math> | ||
+ | | width="20%" style="border-top:1px solid black" | <math>(~)</math> | ||
+ | | width="5%" style="border-top:1px solid black" | <math>=\!</math> | ||
+ | | width="30%" style="border-top:1px solid black" | | ||
+ | <math>\underline{0} ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L1b}_{01}.\!</math> | ||
+ | | <math>\downharpoonleft \operatorname{not}~ s \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\downharpoonleft s \downharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p) ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L1b}_{10}.\!</math> | ||
+ | | <math>\downharpoonleft s \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\downharpoonleft s \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>p ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L1b}_{11}.\!</math> | ||
+ | | <math>\downharpoonleft \operatorname{true} \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\underline{1} ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ===Geometric Translation Rule 1=== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" width="100%" | ||
+ | |- style="height:48px; text-align:right" | ||
+ | | width="98%" | <math>\text{Geometric Translation Rule 1}\!</math> | ||
+ | | width="2%" | | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" width="100%" | ||
+ | |- style="height:48px" | ||
+ | | width="2%" style="border-top:1px solid black" | | ||
+ | | width="18%" style="border-top:1px solid black" | <math>\text{If}\!</math> | ||
+ | | width="80%" style="border-top:1px solid black" | <math>Q \subseteq X</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{and}\!</math> | ||
+ | | <math>p ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{such that:}\!</math> | ||
+ | | | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{G1a.}\!</math> | ||
+ | | <math>\upharpoonleft Q \upharpoonright ~=~ p</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{then}\!</math> | ||
+ | | <math>\text{the following equations hold:}\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" style="text-align:center" width="100%" | ||
+ | |- style="height:52px" | ||
+ | | width="2%" style="border-top:1px solid black" | | ||
+ | | width="18%" style="border-top:1px solid black" align="left" | <math>\text{G1b}_{00}.\!</math> | ||
+ | | width="20%" style="border-top:1px solid black" | | ||
+ | <math>\upharpoonleft \varnothing \upharpoonright</math> | ||
+ | | width="5%" style="border-top:1px solid black" | <math>=\!</math> | ||
+ | | width="20%" style="border-top:1px solid black" | <math>(~)</math> | ||
+ | | width="5%" style="border-top:1px solid black" | <math>=\!</math> | ||
+ | | width="30%" style="border-top:1px solid black" | | ||
+ | <math>\underline{0} ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G1b}_{01}.\!</math> | ||
+ | | <math>\upharpoonleft {}^{_\sim} Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\upharpoonleft Q \upharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p) ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G1b}_{10}.\!</math> | ||
+ | | <math>\upharpoonleft Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\upharpoonleft Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>p ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G1b}_{11}.\!</math> | ||
+ | | <math>\upharpoonleft X \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\underline{1} ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ===Logical Translation Rule 2=== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" width="100%" | ||
+ | |- style="height:48px; text-align:right" | ||
+ | | width="98%" | <math>\text{Logical Translation Rule 2}\!</math> | ||
+ | | width="2%" | | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" width="100%" | ||
+ | |- style="height:48px" | ||
+ | | width="2%" style="border-top:1px solid black" | | ||
+ | | width="14%" style="border-top:1px solid black" | <math>\text{If}\!</math> | ||
+ | | width="84%" style="border-top:1px solid black" | | ||
+ | <math>s, t ~\text{are sentences about things in the universe}~ X</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{and}\!</math> | ||
+ | | <math>p, q ~\text{are propositions} ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{such that:}\!</math> | ||
+ | | | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{L2a.}\!</math> | ||
+ | | <math>\downharpoonleft s \downharpoonright ~=~ p \quad \operatorname{and} \quad \downharpoonleft t \downharpoonright ~=~ q</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{then}\!</math> | ||
+ | | <math>\text{the following equations hold:}\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" style="text-align:center" width="100%" | ||
+ | |- style="height:52px" | ||
+ | | width="2%" style="border-top:1px solid black" | | ||
+ | | width="14%" style="border-top:1px solid black" align="left" | <math>\text{L2b}_{0}.\!</math> | ||
+ | | width="32%" style="border-top:1px solid black" | | ||
+ | <math>\downharpoonleft \operatorname{false} \downharpoonright</math> | ||
+ | | width="4%" style="border-top:1px solid black" | <math>=\!</math> | ||
+ | | width="28%" style="border-top:1px solid black" | <math>(~)</math> | ||
+ | | width="4%" style="border-top:1px solid black" | <math>=\!</math> | ||
+ | | width="16%" style="border-top:1px solid black" | <math>(~)</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{1}.\!</math> | ||
+ | | <math>\downharpoonleft \operatorname{neither}~ s ~\operatorname{nor}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\downharpoonleft s \downharpoonright)(\downharpoonleft t \downharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p)(q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{2}.\!</math> | ||
+ | | <math>\downharpoonleft \operatorname{not}~ s ~\operatorname{but}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\downharpoonleft s \downharpoonright) \downharpoonleft t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p) q\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{3}.\!</math> | ||
+ | | <math>\downharpoonleft \operatorname{not}~ s \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\downharpoonleft s \downharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{4}.\!</math> | ||
+ | | <math>\downharpoonleft s ~\operatorname{and~not}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\downharpoonleft s \downharpoonright (\downharpoonleft t \downharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>p (q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{5}.\!</math> | ||
+ | | <math>\downharpoonleft \operatorname{not}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\downharpoonleft t \downharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{6}.\!</math> | ||
+ | | <math>\downharpoonleft s ~\operatorname{or}~ t, ~\operatorname{not~both} \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\downharpoonleft s \downharpoonright ~,~ \downharpoonleft t \downharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p, q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{7}.\!</math> | ||
+ | | <math>\downharpoonleft \operatorname{not~both}~ s ~\operatorname{and}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\downharpoonleft s \downharpoonright ~ \downharpoonleft t \downharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{8}.\!</math> | ||
+ | | <math>\downharpoonleft s ~\operatorname{and}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\downharpoonleft s \downharpoonright ~ \downharpoonleft t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>p q\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{9}.\!</math> | ||
+ | | <math>\downharpoonleft s ~\operatorname{is~equivalent~to}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((\downharpoonleft s \downharpoonright ~,~ \downharpoonleft t \downharpoonright))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((p, q))\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{10}.\!</math> | ||
+ | | <math>\downharpoonleft t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\downharpoonleft t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>q\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{11}.\!</math> | ||
+ | | <math>\downharpoonleft s ~\operatorname{implies}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\downharpoonleft s \downharpoonright (\downharpoonleft t \downharpoonright))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p (q))\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{12}.\!</math> | ||
+ | | <math>\downharpoonleft s \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\downharpoonleft s \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>p\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{13}.\!</math> | ||
+ | | <math>\downharpoonleft s ~\operatorname{is~implied~by}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((\downharpoonleft s \downharpoonright) \downharpoonleft t \downharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((p) q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{14}.\!</math> | ||
+ | | <math>\downharpoonleft s ~\operatorname{or}~ t \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((\downharpoonleft s \downharpoonright)(\downharpoonleft t \downharpoonright))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((p)(q))\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{L2b}_{15}.\!</math> | ||
+ | | <math>\downharpoonleft \operatorname{true} \downharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ===Geometric Translation Rule 2=== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="0" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black" width="90%" | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" width="100%" | ||
+ | |- style="height:48px; text-align:right" | ||
+ | | width="98%" | <math>\text{Geometric Translation Rule 2}\!</math> | ||
+ | | width="2%" | | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" width="100%" | ||
+ | |- style="height:48px" | ||
+ | | width="2%" style="border-top:1px solid black" | | ||
+ | | width="14%" style="border-top:1px solid black" | <math>\text{If}\!</math> | ||
+ | | width="84%" style="border-top:1px solid black" | <math>P, Q \subseteq X</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{and}\!</math> | ||
+ | | <math>p, q ~:~ X \to \underline\mathbb{B}</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{such that:}\!</math> | ||
+ | | | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{G2a.}\!</math> | ||
+ | | <math>\upharpoonleft P \upharpoonright ~=~ p \quad \operatorname{and} \quad \upharpoonleft Q \upharpoonright ~=~ q</math> | ||
+ | |- style="height:48px" | ||
+ | | | ||
+ | | <math>\text{then}\!</math> | ||
+ | | <math>\text{the following equations hold:}\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" cellpadding="0" cellspacing="0" style="text-align:center" width="100%" | ||
+ | |- style="height:52px" | ||
+ | | width="2%" style="border-top:1px solid black" | | ||
+ | | width="14%" style="border-top:1px solid black" align="left" | <math>\text{G2b}_{0}.\!</math> | ||
+ | | width="32%" style="border-top:1px solid black" | | ||
+ | <math>\upharpoonleft \varnothing \upharpoonright</math> | ||
+ | | width="4%" style="border-top:1px solid black" | <math>=\!</math> | ||
+ | | width="28%" style="border-top:1px solid black" | <math>(~)</math> | ||
+ | | width="4%" style="border-top:1px solid black" | <math>=\!</math> | ||
+ | | width="16%" style="border-top:1px solid black" | <math>(~)</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{1}.\!</math> | ||
+ | | <math>\upharpoonleft \overline{P} ~\cap~ \overline{Q} \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\upharpoonleft P \upharpoonright)(\upharpoonleft Q \upharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p)(q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{2}.\!</math> | ||
+ | | <math>\upharpoonleft \overline{P} ~\cap~ Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\upharpoonleft P \upharpoonright) \upharpoonleft Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p) q\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{3}.\!</math> | ||
+ | | <math>\upharpoonleft \overline{P} \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\upharpoonleft P \upharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{4}.\!</math> | ||
+ | | <math>\upharpoonleft P ~\cap~ \overline{Q} \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\upharpoonleft P \upharpoonright (\upharpoonleft Q \upharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>p (q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{5}.\!</math> | ||
+ | | <math>\upharpoonleft \overline{Q} \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\upharpoonleft Q \upharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{6}.\!</math> | ||
+ | | <math>\upharpoonleft P ~+~ Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\upharpoonleft P \upharpoonright ~,~ \upharpoonleft Q \upharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p, q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{7}.\!</math> | ||
+ | | <math>\upharpoonleft \overline{P ~\cap~ Q} \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\upharpoonleft P \upharpoonright ~ \upharpoonleft Q \upharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{8}.\!</math> | ||
+ | | <math>\upharpoonleft P ~\cap~ Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\upharpoonleft P \upharpoonright ~ \upharpoonleft Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>p q\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{9}.\!</math> | ||
+ | | <math>\upharpoonleft \overline{P ~+~ Q} \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((\upharpoonleft P \upharpoonright ~,~ \upharpoonleft Q \upharpoonright))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((p, q))\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{10}.\!</math> | ||
+ | | <math>\upharpoonleft Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\upharpoonleft Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>q\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{11}.\!</math> | ||
+ | | <math>\upharpoonleft \overline{P ~\cap~ \overline{Q}} \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(\upharpoonleft P \upharpoonright (\upharpoonleft Q \upharpoonright))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>(p (q))\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{12}.\!</math> | ||
+ | | <math>\upharpoonleft P \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>\upharpoonleft P \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>p\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{13}.\!</math> | ||
+ | | <math>\upharpoonleft \overline{\overline{P} ~\cap~ Q} \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((\upharpoonleft P \upharpoonright) \upharpoonleft Q \upharpoonright)</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((p) q)\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{14}.\!</math> | ||
+ | | <math>\upharpoonleft P ~\cup~ Q \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((\upharpoonleft P \upharpoonright)(\upharpoonleft Q \upharpoonright))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((p)(q))\!</math> | ||
+ | |- style="height:52px" | ||
+ | | | ||
+ | | align="left" | <math>\text{G2b}_{15}.\!</math> | ||
+ | | <math>\upharpoonleft X \upharpoonright</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((~))</math> | ||
+ | | <math>=\!</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <br> | ||
---- | ---- |
Revision as of 20:30, 10 September 2010
• Contents • Part 1 • Part 2 • Part 3 • Appendices • References • Document History •
Appendices
Logical Translation Rule 1
| ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
|
Geometric Translation Rule 1
| ||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||
|
Logical Translation Rule 2
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Geometric Translation Rule 2
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
• Contents • Part 1 • Part 2 • Part 3 • Appendices • References • Document History •
<sharethis />