Difference between revisions of "Directory:Jon Awbrey/Notes/Factorization Issues"

MyWikiBiz, Author Your Legacy — Saturday December 28, 2024
Jump to navigationJump to search
(→‎Note 1: markup)
(del work area)
 
(7 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
|}
 
|}
  
==Note 1==
+
==Factoring Functions==
  
 
I would like to introduce a concept that I find to be of use in discussing the problems of hypostatic abstraction, reification, the reality of universals, and the questions of choosing among nominalism, conceptualism, and realism, generally.
 
I would like to introduce a concept that I find to be of use in discussing the problems of hypostatic abstraction, reification, the reality of universals, and the questions of choosing among nominalism, conceptualism, and realism, generally.
Line 31: Line 31:
 
|}
 
|}
  
Now, it is a fact that any old function that you might pick ''factors'' into a surjective ("onto") function and an injective ("one-to-one") function, in the present example just like so:
+
It is a fact that any function you might pick ''factors'' into a surjective ("onto") function and an injective ("one-to-one") function, in the present example taking the following shape:
  
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
Line 42: Line 42:
 
|      g  |      \ | /    \  /      |
 
|      g  |      \ | /    \  /      |
 
|          v        \|/      \ /        |
 
|          v        \|/      \ /        |
Middle M  =  {  b  ,    e  }    |
+
Medium M  =  {  b  ,    e  }    |
 
|          |        |        |        |
 
|          |        |        |        |
 
|      h  |        |        |        |
 
|      h  |        |        |        |
Line 52: Line 52:
 
|}
 
|}
  
Writing the functional compositions <math>f = g \circ h</math> "on the right", as they say, we have the following data about the situation:
+
Writing the functional compositions <math>f = g \circ h</math> on the right, we have the following data about the situation:
  
 
<pre>
 
<pre>
Line 69: Line 69:
 
objects and into a set of sorting bins that are labeled with the elements of the set <math>Y,\!</math> regarded as a set of classifiers, concepts, descriptors, percepts, or just plain signs, whether these signs are regarded as being in the mind, as with concepts, or whether they happen to be inscribed more publicly in another medium.
 
objects and into a set of sorting bins that are labeled with the elements of the set <math>Y,\!</math> regarded as a set of classifiers, concepts, descriptors, percepts, or just plain signs, whether these signs are regarded as being in the mind, as with concepts, or whether they happen to be inscribed more publicly in another medium.
  
<pre>
+
In general, if we try to use the signs in the target domain <math>Y\!</math> to reference the objects in the source domain <math>X,\!</math> then we will be invoking what used to be called &mdash; since the Middle Ages, I think &mdash; a manner of ''general reference'' or a mode of ''plural denotation'', that is to say, one sign will, in general, denote each of many objects, in a way that would normally be called ambiguous or equivocal.
In general, if we try to use the signs in the Target (Co-domain) Y
+
 
to reference the objects in the Source (Domain) X, then we will be
+
Notice what I did not say here, that one sign denotes a ''set'' of objects, because I am for the moment conducting myself as such a dyed-in-the-wool nominal thinker that I hesitate even to admit so much as the existence of this thing we call a ''set'' into the graces of my formal ontology, though, of course, my casual speech is rife with the use of the word ''set'', and in a way that the nominal thinker, true-blue to the end, would probably be inclined or duty-bound to insist is a purely dispensable convenience.
invoking what used to be called -- since the Middle Ages, I think --
+
 
a manner of "general reference" or a mode of "plural denotation",
+
In fact, the invocation of a new order of entities, whether you regard its typical enlistee as a class, a concept, a form, a general, an idea, an interpretant, a property, a set, a universal, or whatever you elect to call it, is tantamount exactly to taking this step that I just now called the ''factoring'' of the classification function into surjective and injective factors.
that is to say, one sign will, in general, denote each of many
 
objects, in a way that would normally be called "ambiguous",
 
"equivocal", "indefinite", "indiscriminate", and so on.
 
  
Notice what I did not say here, that one sign denotes a "set" of objects,
+
Observe, however, that here is where all the battles tend to break out, for not all factorizations are regarded with equal equanimity by folks who have divergent philosophical attitudes toward the creation of new entities, especially when they get around to asking:  "In what domain or estate shall the multiplicity of newborn entities be lodged or yet come to reside on a permanent basis?" Some factorizations enfold new orders of entities within the Object domain of a fundamental ontology, and some factorizations invoke new orders of entities within the Sign domains of concepts, data, interpretants, language, meaning, percepts, and senses in general.  Now, opting for the "Object" choice of habitation would usually be taken as symptomatic of "realist" leanings, while opting out of the factorization altogether, or weakly conceding the purely expedient convenience of the "Sign" choice for the status of the intermediate entities, would probably be taken as evidence of a "nominalist" persuasion.
because I am for the moment conducting myself as such a dyed-in-the-wool
 
nominal thinker that I hesitate even to admit so much as the existence of
 
this thing we call a "set" into the graces of my formal ontology, though,
 
of course, my casual speech is rife with the use of the word "set", and
 
in a way that the nominal thinker, true-blue to the end, would probably
 
be inclined or duty-bound to insist is a purely dispensable convenience.
 
  
In fact, the invocation of a new order of entities, whether you regard
+
==Factoring Sign Relations==
its typical enlistee as a class, a concept, a form, a general, an idea,
 
an interpretant, a property, a set, a universal, or whatever you elect
 
to call it, is tantamount exactly to taking this step that I just now
 
called the "factoring" of the classification function into surjective
 
and injective factors.
 
  
Observe, however, that here is where all the battles tend to break out,
+
Let us now apply the concepts of factorization and reification, as they are developed above, to the analysis of sign relations.
for not all factorizations are regarded with equal equanimity by folks
 
who have divergent philosophical attitudes toward the creation of new
 
entities, especially when they get around to asking:  "In what domain
 
or estate shall the multiplicity of newborn entities be lodged or yet
 
come to reside on a permanent basis?"  Some factorizations enfold new
 
orders of entities within the Object domain of a fundamental ontology,
 
and some factorizations invoke new orders of entities within the Sign
 
domains of concepts, data, interpretants, language, meaning, percepts,
 
and "sense in general" (SIG).  Now, opting for the "Object" choice of
 
habitation would usually be taken as symptomatic of "realist" leanings,
 
while opting out of the factorization altogether, or weakly conceding
 
the purely expedient convenience of the "Sign" choice for the status
 
of the intermediate entities, would probably be taken as evidence of
 
a "nominalist" persuasion.
 
  
Suppose that we have a sign relation L c OxSxI,
+
Suppose we have a sign relation <math>L \subseteq O \times S \times I,</math> where <math>O\!</math> is the object domain, <math>S\!</math> is the sign domain, and <math>I\!</math> is the interpretant domain of the sign relation <math>L.\!</math>
where the sets O, S, I are the domains of the
 
Object, Sign, Interpretant domains, respectively.
 
  
Now suppose that the situation with respect to
+
Now suppose that the situation with respect to the ''denotative component'' of <math>L,\!</math> in other words, the projection of <math>L\!</math> on the subspace <math>O \times S,</math> can be pictured in the following manner, where equal signs written between ostensible nodes identify them into a single actual node.
the "denotative component" of L, in other words,
 
the "projection" of L on the subspace OxS, can
 
be pictured in the following manner, where equal
 
signs, like "=", written between ostensible nodes,
 
like "o", identify them into a single real node.
 
</pre>
 
  
{| align="center" cellpadding="10" style="text-align:center; width:90%"
+
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 
|
 
|
 
<pre>
 
<pre>
Line 152: Line 116:
 
|}
 
|}
  
<pre>
+
The Figure depicts a situation where each of the three objects, <math>x_1, x_2, x_3,\!</math> has a ''proper name'' that denotes it alone, namely, the three proper names <math>y_1, y_2, y_3,\!</math> respectively. Over and above the objects denoted by their proper names, there is the general sign <math>y,\!</math> which denotes any and all of the objects <math>x_1, x_2, x_3.\!</math> This kind of sign is described as a ''general name'' or a ''plural term'', and its relation to its objects is a ''general reference'' or a ''plural denotation''.
This depicts a situation where each of the three objects,
 
x_1, x_2, x_3, has a "proper name" that denotes it alone,
 
namely, the three proper names y_1, y_2, y_3, respectively.
 
Over and above the objects denoted by their proper names,
 
there is the general sign y, which denotes any and all of
 
the objects x_1, x_2, x_3.  This kind of sign is described
 
as a "general name" or a "plural term", and its relation to
 
its objects is a "general reference" or a "plural denotation".
 
  
Now, at this stage of the game, if you ask:
+
Now, at this stage of the game, if you ask: ''Is the object of the sign <math>y\!</math> one or many?'', the answer has to be:  ''Not one, but many''. That is, there is not one <math>x\!</math> that <math>y\!</math> denotes, but only the three <math>x\!</math>'s in the object space. Nominal thinkers would ask:  ''Granted this, what need do we have really of more excess?''  The maxim of the nominal thinker is ''never read a general name as a name of a general'', meaning that we should never jump from the accidental circumstance of a plural sign <math>y\!</math> to the abnominal fact that a unit <math>x\!</math> exists.
"Is the object of the sign y one or many?",
 
the answer has to be:  "Not one, but many".
 
That is, there is not one x that y denotes,
 
but only the three x's in the object space.
 
Nominal thinkers would ask:  "Granted this,
 
what need do we have really of more excess?"
 
The maxim of the nominal thinker is "never
 
read a general name as a name of a general",
 
meaning that we should never jump from the
 
accidental circumstance of a plural sign y
 
to the abnominal fact that a unit x exists.
 
  
In actual practice this would be just one segment of a much larger
+
In actual practice this would be just one segment of a much larger sign relation, but let us continue to focus on just this one piece. The association of objects with signs is not in general a function, no matter which way, from <math>O\!</math> to <math>S\!</math> or from <math>S\!</math> to <math>O,\!</math> that we might try to read it, but very often one will choose to focus on a selection of links that do make up a function in one direction or the other.
sign relation, but let us continue to focus on just this one piece.
 
The association of objects with signs is not in general a function,
 
no matter which way, from O to S or from S to O, that we might try
 
to read it, but very often one will choose to focus on a selection
 
of links that do make up a function in one direction or the other.
 
  
In general, but in this context especially, it is convenient
+
In general, but in this context especially, it is convenient to have a name for the converse of the denotation relation, or for any selection from it.  I have been toying with the idea of calling this ''annotation'', or maybe ''ennotation''.
to have a name for the converse of the denotation relation,
 
or for any selection from it.  I have been toying with the
 
idea of calling this "annotation", or maybe "ennotation".
 
  
For a not too impertinent instance, the assignment of the
+
For example, the assignment of the general term <math>y</math> to each of the objects <math>x_1, x_2, x_3\!</math> is one such functional patch, piece, segment, or selection. So this patch can be pictured according to the pattern that was previously observed, and thus transformed by means of a canonical factorization.
general term y to each of the objects x_1, x_2, x_3 is
 
one such functional patch, piece, segment, or selection.
 
So this patch can be pictured according to the pattern
 
that was previously observed, and thus transformed by
 
means of a canonical factorization.
 
  
In this case, we factor the function f : O -> S
+
In our example of a sign relation, we had a functional subset of the following shape:
</pre>
 
  
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
Line 214: Line 145:
 
|}
 
|}
  
into the composition g o h, where g : O -> M, and h : M -> S
+
The function <math>f : O \to S</math> factors into a composition <math>g \circ h,\!</math> where <math>g : O \to M,</math> and <math>h : M \to S,</math> as shown here:
  
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
Line 226: Line 157:
 
|          |        \ | /              |
 
|          |        \ | /              |
 
|          v          \|/              |
 
|          v          \|/              |
Middle M  :>  ... x ...            |
+
Medium M  :>  ... x ...            |
 
|          |          |                |
 
|          |          |                |
 
|      h  |          |                |
 
|      h  |          |                |
Line 237: Line 168:
 
|}
 
|}
  
<pre>
+
The factorization of an arbitrary function into a surjective ("onto") function followed by an injective ("one-one") function is such a deceptively trivial observation that I had guessed that you would all wonder what in the heck, if anything, could possibly come of it.
The factorization of an arbitrary function
 
into a surjective ("onto") function followed
 
by an injective ("one-one") function is such
 
a deceptively trivial observation that I had
 
guessed that you would all wonder what in the
 
heck, if anything, could possibly come of it.
 
  
What it means is that, "without loss or gain of generality" (WOLOGOG),
+
What it means is that &mdash; without loss or gain of generality &mdash; we might as well assume that there is a domain of intermediate entities under which the objects of a general denotation can be marshalled, just as if they actually had something rather more essential and really more substantial in common than the shared attachment to a coincidental name. So the problematic status of a hypostatic entity like <math>x\!</math> is reduced from a question of its nominal existence to a matter of its local habitation. Is it more like an object or more like a sign?  One wonders why there has to be only these two categories, and why not just form up another, but that does not seem like playing the game to propose it. At any rate, I will defer for now one other obvious possibility &mdash; obvious from the standpoint of the pragmatic theory of signs &mdash; the option of assigning the new concept, or mental symbol, to the role of an interpretant sign.
we might as well assume that there is a domain of intermediate entities
 
under which the objects of a general denotation can be marshalled, just
 
as if they actually had something rather more essential and really more
 
substantial in common than the shared attachment to a coincidental name.
 
So the problematic status of a hypostatic entity like x is reduced from
 
a question of its nominal existence to a matter of its local habitation.
 
Is it very like a sign, or is it rather more like an object?  One wonders
 
why there has to be only these two categories, and why not just form up
 
another, but that does not seem like playing the game to propose it.
 
At any rate, I will defer for now one other obvious possibility --
 
obvious from the standpoint of the pragmatic theory of signs --
 
the option of assigning the new concept, or mental symbol,
 
to the role of an interpretant sign.
 
  
If we force the factored annotation function,
+
If we force the factored annotation function, initially extracted from the sign relation <math>L,\!</math> back into the frame from whence it came, we get the augmented sign relation <math>L^\prime,\!</math> shown in the next Figure:
initially extracted from the sign relation L,
 
back into the frame from whence it once came,
 
we get the augmented sign relation L', shown
 
in the next vignette:
 
</pre>
 
  
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
 
{| align="center" cellpadding="10" style="text-align:center; width:90%"
Line 298: Line 205:
 
|}
 
|}
  
<pre>
+
This amounts to the creation of a hypostatic object <math>x,\!</math> which affords us a singular denotation for the sign <math>y.\!</math>
This amounts to the creation of a hypostatic object x,
 
which affords us a singular denotation for the sign y.
 
  
By way of terminology, it would be convenient to have
+
By way of terminology, it would be convenient to have a general name for the transformation that converts a bare, ''nominal'' sign relation like <math>L\!</math> into a new, improved ''hypostatically augmented or extended'' sign relation like <math>L^\prime.</math>  Let us call this kind of transformation an ''objective extension'' or an ''outward extension'' of the underlying sign relation.
a general name for the transformation that converts
 
a bare "nominal" sign relation like L into a new,
 
improved "hypostatically augmented or extended"
 
sign relation like L'.
 
  
I call this kind of transformation
+
This naturally raises the question of whether there is also an augmentation of sign relations that might be called an ''interpretive extension'' or an ''inward extension'' of the underlying sign relation, and this is the topic that I will take up next.
an "objective extension" (OE) or
 
an "outward extension" (OE) of
 
the underlying sign relation.
 
  
This naturally raises the question of
+
==Nominalism and Realism==
whether there is also an augmentation
 
of sign relations that might be called
 
an "interpretive extension" (IE) or
 
an "inward extension" (IE) of
 
the underlying sign relation,
 
and this is the topic that
 
I will take up next.
 
</pre>
 
  
==Note 2==
+
Let me now illustrate what I think that a lot of our controversies about nominalism versus realism actually boil down to in practice.  From a semiotic or a sign-theoretic point of view, it all begins with a case of ''plural reference'', which happens when a sign <math>y\!</math> is quite literally taken to denote each object <math>x_j\!</math> in a whole collection of objects <math>\{ x_1, \ldots, x_k, \ldots \},</math> a situation that can be represented in a sign-relational table like this one:
  
 +
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 +
|
 
<pre>
 
<pre>
Let me illustrate what I think that a plethora of our controversies
 
about nominalism versus realism actually boil down to in practice.
 
From a semiotic or a sign-theoretic point of view, it all begins
 
with a case of "plural reference", which happens when a sign y
 
is quite literally taken to denote each object x_j in a whole
 
collection of objects {x_1, ..., x_k, ...}, a situation that
 
I'd normally represent in a sign-relational table like so:
 
 
 
o---------o---------o---------o
 
o---------o---------o---------o
 
| Object  |  Sign  | Interp  |
 
| Object  |  Sign  | Interp  |
Line 344: Line 228:
 
|  ...  |    y    |  ...  |
 
|  ...  |    y    |  ...  |
 
o---------o---------o---------o
 
o---------o---------o---------o
 +
</pre>
 +
|}
  
For brevity, let us consider the sign relation L
+
For brevity, let us consider a sign relation <math>L\!</math> whose relational database table is precisely this:
whose relational database table is precisely this:
 
  
 +
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o-----------------------------o
 
o-----------------------------o
 
|      Sign Relation L      |
 
|      Sign Relation L      |
Line 357: Line 245:
 
|  x_3  |    y    |  ...  |
 
|  x_3  |    y    |  ...  |
 
o---------o---------o---------o
 
o---------o---------o---------o
 +
</pre>
 +
|}
  
 
For the moment, it does not matter what the interpretants are.
 
For the moment, it does not matter what the interpretants are.
  
I would like to diagram this somewhat after the following fashion,
+
I would like to diagram this somewhat after the following fashion, here detailing just the denotative component of the sign relation, that is, the 2-adic relation that is obtained by "projecting out" the Object and Sign columns of the table.
here detailing just the denotative component of the sign relation,
 
that is, the 2-adic relation that is obtained by "projecting out"
 
the Object and the Sign columns of the table.
 
  
 +
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o-----------------------------o
 
o-----------------------------o
 
| Denotative Component of L  |
 
| Denotative Component of L  |
Line 380: Line 270:
 
|                            |
 
|                            |
 
o-----------------------------o
 
o-----------------------------o
 +
</pre>
 +
|}
  
I would like to -- but my personal limitations in the
+
I would like to &mdash; but my personal limitations in the Art of ASCII Hieroglyphics do not permit me to maintain this level of detail as the figures begin to ramify much beyond this level of complexity.  Therefore, let me use the following device to symbolize the same configuration:
Art of ASCII Hieroglyphics do not permit me to maintain
 
this level of detail as the figures begin to ramify much
 
beyond this level of complexity.  Therefore, let me use
 
the following device to symbolize the same configuration:
 
  
 +
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o-----------------------------o
 
o-----------------------------o
 
| Denotative Component of L  |
 
| Denotative Component of L  |
Line 396: Line 287:
 
|                            |
 
|                            |
 
o-----------------------------o
 
o-----------------------------o
 +
</pre>
 +
|}
  
 
Notice the subtle distinction between these two cases:
 
Notice the subtle distinction between these two cases:
  
  1.  A sign denotes each object in a set of objects.
+
# A sign denotes each object in a set of objects.
 +
# A sign denotes a set of objects.
  
  2.  A sign denotes a set of objects.
+
The first option uses the notion of a set in a casual, informal, or metalinguistic way, and does not really commit us to the existence of sets in any formal way.  This is the more razoresque choice, much less risky, ontologically speaking, and so we may adopt it as our "nominal" starting position.
  
The first option uses the notion of a set in a casual,
+
In this ''plural denotative'' component of the sign relation, we are looking at what may be seen as a functional relationship, in the sense that we have a piece of some function <math>f : O \to S,</math> such that <math>f(x_1) =\!</math> <math>f(x_2) =\!</math> <math>f(x_3) = y,\!</math> for example.  A function always admits of being factored into an "onto" (surjective) map followed by a "one-to-one" (injective) map, as discussed earlier.
informal, or metalinguistic way, and does not really
 
commit us to the existence of sets in any formal way.
 
This is the more razoresque choice, much less risky,
 
ontologically speaking, and so we may adopt it as
 
our "nominal" starting position.
 
  
Now, in this "plural denotative" component of the sign relation,
+
But where do the intermediate entities go?  We could lodge them in a brand new space all their own, but Ockham the Innkeeper is right up there with Old Procrustes when it comes to the amenity of his accommodations, and so we feel compelled to at least try shoving them into one or another of the spaces already reserved.
we are looking at what may be seen as a functional relationship,
 
in the sense that we have a piece of some function f : O -> S,
 
such that f(x_1) = f(x_2) = f(x_3) = y, for example.  A function
 
always admits of being factored into an "onto" (surjective) map
 
followed by a "one-to-one" (injective) map, as discussed earlier.
 
  
But where do the intermediate entities go?  We could lodge them
+
In the rest of this discussion, let us assign the label <math>{}^{\backprime\backprime} i \, {}^{\prime\prime}</math> to the intermediate entity between the objects <math>x_j\!</math> and the sign <math>y.\!</math>
in a brand new space all their own, but Ockham the Innkeeper is
 
right up there with Old Procrustes when it comes to the amenity
 
of his accommodations, and so we feel compelled to at least try
 
shoving them into one or another of the spaces already reserved.
 
  
In the rest of this discussion, let us assign the label "i" to
+
Now, should you annex <math>i\!</math> to the object domain <math>O\!</math> you will have instantly given yourself away as having ''realist'' tendencies, and you might as well go ahead and call it an ''intension'' or even an ''Idea'' of the grossly subtlest Platonic brand, since you are about to booted from Ockham's Establishment, and you might as well have the comforts of your ideals in your exile.
the intermediate entity between the objects x_j and the sign y.
 
 
 
Now, should you annex i to the object domain O you will have
 
instantly given yourself away as having "Realist" tendencies,
 
and you might as well go ahead and call it an "Intension" or
 
even an "Idea" of the grossly subtlest Platonic brand, since
 
you are about to booted from Ockham's Establishment, and you
 
might as well have the comforts of your Ideals in your exile.
 
  
 +
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o-----------------------------o
 
o-----------------------------o
 
| Denotative Component of L'  |
 
| Denotative Component of L'  |
Line 446: Line 321:
 
|                            |
 
|                            |
 
o-----------------------------o
 
o-----------------------------o
 +
</pre>
 +
|}
  
But if you assimilate i to the realm of signs S, you will
+
But if you assimilate <math>i\!</math> to the realm of signs <math>S,\!</math> you will be showing your inclination to remain within the straight and narrow of ''conceptualist'' or even ''nominalist'' dogmas, and you may read this <math>i\!</math> as standing for an intelligible concept, or an ''idea'' of the safely decapitalized, mental impression variety.
be showing your inclination to remain within the straight
 
and narrow of "Conceptualist" or even "Nominalist" dogmas,
 
and you may read this "i" as standing for an intelligible
 
concept, or an "idea" of the safely decapitalized, mental
 
impression variety.
 
  
 +
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o-----------------------------o
 
o-----------------------------o
| Denotative Component of L|
+
| Denotative Component of L'' |
 
o--------------o--------------o
 
o--------------o--------------o
 
|  Objects    |    Signs    |
 
|  Objects    |    Signs    |
Line 468: Line 343:
 
|                            |
 
|                            |
 
o-----------------------------o
 
o-----------------------------o
 +
</pre>
 +
|}
  
But if you dare to be truly liberal, you might just find
+
But if you dare to be truly liberal, you might just find that you can easily afford to accommmodate the illusions of both of these types of intellectual inclinations, and after a while you begin to wonder how all of that mental or ontological downsizing got started in the first place.
that you can easily afford to accommmodate the illusions
 
of both of these types of intellectual inclinations, and
 
after a while you begin to wonder how all of that mental
 
or ontological downsizing got started in the first place.
 
  
 +
{| align="center" cellspacing="10" style="text-align:center; width:90%"
 +
|
 +
<pre>
 
o-----------------------------o
 
o-----------------------------o
| Denotative Component of L'" |
+
| Denotative Component of L'''|
 
o--------------o--------------o
 
o--------------o--------------o
 
|  Objects    |    Signs    |
 
|  Objects    |    Signs    |
Line 493: Line 369:
 
|                            |
 
|                            |
 
o-----------------------------o
 
o-----------------------------o
 
To sum up, we have recognized the perfectly innocuous utility
 
of admitting the abstract intermediate object i, that may be
 
interpreted as an intension, a property, or a quality that
 
is held in common by all of the initial objects x_j that
 
are plurally denoted by the sign y.  Further, it appears
 
to be equally unexceptionable to allow the use of the
 
sign "i" to denote this shared intension i.  Finally,
 
all of this flexibility arises from a universally
 
available construction, a type of compositional
 
factorization, common to the functional parts
 
of the dyadic components of any relation.
 
 
</pre>
 
</pre>
 +
|}
  
==Work Area==
+
To sum up, we have recognized the perfectly innocuous utility of admitting the abstract intermediate object <math>i,\!</math> that may be interpreted as an intension, a property, or a quality that is held in common by all of the initial objects <math>x_j\!</math> that are plurally denoted by the sign <math>y.\!</math>  Further, it appears to be equally unexceptionable to allow the use of the sign <math>{}^{\backprime\backprime} i \, {}^{\prime\prime}</math> to denote this shared intension <math>i.\!</math>  Finally, all of this flexibility arises from a universally available construction, a type of compositional factorization, common to the functional parts of the 2-adic components of any relation.
 
 
<pre>
 
The word "intension" has recently come to be stressed in our discussions.
 
As I first learned this word from my reading of Leibniz, I shall take it
 
to be nothing more than a synonym for "property" or "quality", and shall
 
probably always associate it with the primes factorization of integers,
 
the analogy between having a factor and having a property being one of
 
the most striking, at least to my neo-pythagorean compleated mystical
 
sensitivities, that Leibniz ever posed, and of which certain facets
 
of Peirce's work can be taken as a further polishing up, if one is
 
of a mind to do so.
 
 
 
As I dare not presume this to constitute the common acceptation
 
of the term "intension", not without checking it out, at least,
 
I will need to try and understand how others here understand
 
the term and all of its various derivatives, thereby hoping
 
to anticipate, that is to say, to evade or to intercept,
 
a few of the brands of late-breaking misunderstandings
 
that are so easy to find ourselves being surprised by,
 
if one shies away from asking silly questions at the
 
very first introduction of one of these parvenu words.
 
I have been advised that it will probably be fruitless
 
to ask direct questions of my informants in such a regard,
 
but I do not see how else to catalyze the process of exposing
 
the presumption that "it's just understood" when in fact it may
 
be far from being so, and thus to clear the way for whatever real
 
clarification might possibly be forthcoming, in the goodness of time.
 
Just to be open, and patent, and completely above the metonymous board,
 
I will lay out the paradigm that I myself bear in mind when I think about
 
how I might place the locus and the sense of this term "intension", because
 
I see the matter of where to lodge it in our logical logistic as being quite
 
analogous to the issue of where to place those other i-words, namely, "idea",
 
capitalized or not, "impresssion", "intelligible concept", and "interpretant".
 
</pre>
 
  
 
==Document History==
 
==Document History==
  
 
===Nov 2000 &mdash; Factorization Issues===
 
===Nov 2000 &mdash; Factorization Issues===
 
'''Ontology List'''
 
 
* http://suo.ieee.org/ontology/thrd111.html#00007
 
# http://suo.ieee.org/ontology/msg00007.html
 
# http://suo.ieee.org/ontology/msg00025.html
 
# http://suo.ieee.org/ontology/msg00032.html
 
  
 
'''Standard Upper Ontology'''
 
'''Standard Upper Ontology'''
Line 568: Line 392:
 
# http://suo.ieee.org/email/msg02430.html
 
# http://suo.ieee.org/email/msg02430.html
 
# http://suo.ieee.org/email/msg02448.html
 
# http://suo.ieee.org/email/msg02448.html
 +
 +
'''Ontology List'''
 +
 +
* http://suo.ieee.org/ontology/thrd111.html#00007
 +
# http://suo.ieee.org/ontology/msg00007.html
 +
# http://suo.ieee.org/ontology/msg00025.html
 +
# http://suo.ieee.org/ontology/msg00032.html
  
 
===Mar 2001 &mdash; Factorization Flip-Flop===
 
===Mar 2001 &mdash; Factorization Flip-Flop===

Latest revision as of 03:18, 25 June 2009

Things are equivocally named, when they have the name only in common, the definition (or statement of essence) corresponding with the name being different. For instance, while a man and a portrait can properly both be called "animals" [since the Greek zõon applies to both], these are equivocally named. For they have the name only in common, the definitions (or statements of essence) corresponding with the name being different. For if you are asked to define what the being an animal means in the case of the man and the portrait, you give in either case a definition appropriate to that case alone. (Categories, p. 13).

Aristotle, "The Categories", in Aristotle, Volume 1, H.P. Cooke and H. Tredennick (trans.), Loeb Classics, William Heinemann Ltd, London, UK, 1938.

Factoring Functions

I would like to introduce a concept that I find to be of use in discussing the problems of hypostatic abstraction, reification, the reality of universals, and the questions of choosing among nominalism, conceptualism, and realism, generally.

I will take this up first in the simplest possible setting, where it has to do with the special sorts of relations that are commonly called functions, and after the basic idea is made as clear as possible in this easiest case I will deal with the notion of factorization as it affects more generic types of relations.

Picture an arbitrary function from a source or domain to a target or codomain. Here is one picture of an \(f : X \to Y,\) just about as generic as it needs to be:

o---------------------------------------o
|                                       |
|   Source X  =  {1, 2, 3, 4,    5}     |
|          |      o  o  o  o     o      |
|      f   |       \ | /    \   /       |
|          |        \|/      \ /        |
|          v      o  o  o  o  o  o      |
|   Target Y  =  {A, B, C, D, E, F}     |
|                                       |
o---------------------------------------o

It is a fact that any function you might pick factors into a surjective ("onto") function and an injective ("one-to-one") function, in the present example taking the following shape:

o---------------------------------------o
|                                       |
|   Source X  =  {1, 2, 3, 4,    5}     |
|          |      o  o  o  o     o      |
|      g   |       \ | /    \   /       |
|          v        \|/      \ /        |
|   Medium M  =  {   b   ,    e   }     |
|          |         |        |         |
|      h   |         |        |         |
|          v      o  o  o  o  o  o      |
|   Target Y  =  {A, B, C, D, E, F}     |
|                                       |
o---------------------------------------o

Writing the functional compositions \(f = g \circ h\) on the right, we have the following data about the situation:

   X  =  {1, 2, 3, 4, 5}
   M  =  {b, e}
   Y  =  {A, B, C, D, E, F}

   f : X -> Y, arbitrary.
   g : X -> M, surjective.
   h : M -> Y, injective.

   f = g o h

What does all of this have to do with reification and so on? Well, suppose that the source domain \(X\!\) is a set of objects, that the target domain \(Y\!\) is a set of signs, and suppose that the function \(f : X \to Y\) indicates the effect of a classification, conceptualization, discrimination, perception, or some other type of sorting operation, distributing the elements of the set \(X\!\) of objects and into a set of sorting bins that are labeled with the elements of the set \(Y,\!\) regarded as a set of classifiers, concepts, descriptors, percepts, or just plain signs, whether these signs are regarded as being in the mind, as with concepts, or whether they happen to be inscribed more publicly in another medium.

In general, if we try to use the signs in the target domain \(Y\!\) to reference the objects in the source domain \(X,\!\) then we will be invoking what used to be called — since the Middle Ages, I think — a manner of general reference or a mode of plural denotation, that is to say, one sign will, in general, denote each of many objects, in a way that would normally be called ambiguous or equivocal.

Notice what I did not say here, that one sign denotes a set of objects, because I am for the moment conducting myself as such a dyed-in-the-wool nominal thinker that I hesitate even to admit so much as the existence of this thing we call a set into the graces of my formal ontology, though, of course, my casual speech is rife with the use of the word set, and in a way that the nominal thinker, true-blue to the end, would probably be inclined or duty-bound to insist is a purely dispensable convenience.

In fact, the invocation of a new order of entities, whether you regard its typical enlistee as a class, a concept, a form, a general, an idea, an interpretant, a property, a set, a universal, or whatever you elect to call it, is tantamount exactly to taking this step that I just now called the factoring of the classification function into surjective and injective factors.

Observe, however, that here is where all the battles tend to break out, for not all factorizations are regarded with equal equanimity by folks who have divergent philosophical attitudes toward the creation of new entities, especially when they get around to asking: "In what domain or estate shall the multiplicity of newborn entities be lodged or yet come to reside on a permanent basis?" Some factorizations enfold new orders of entities within the Object domain of a fundamental ontology, and some factorizations invoke new orders of entities within the Sign domains of concepts, data, interpretants, language, meaning, percepts, and senses in general. Now, opting for the "Object" choice of habitation would usually be taken as symptomatic of "realist" leanings, while opting out of the factorization altogether, or weakly conceding the purely expedient convenience of the "Sign" choice for the status of the intermediate entities, would probably be taken as evidence of a "nominalist" persuasion.

Factoring Sign Relations

Let us now apply the concepts of factorization and reification, as they are developed above, to the analysis of sign relations.

Suppose we have a sign relation \(L \subseteq O \times S \times I,\) where \(O\!\) is the object domain, \(S\!\) is the sign domain, and \(I\!\) is the interpretant domain of the sign relation \(L.\!\)

Now suppose that the situation with respect to the denotative component of \(L,\!\) in other words, the projection of \(L\!\) on the subspace \(O \times S,\) can be pictured in the following manner, where equal signs written between ostensible nodes identify them into a single actual node.

o-----------------------------o
| Denotative Component of L   |
o--------------o--------------o
|   Objects    |    Signs     |
o--------------o--------------o
|                             |
|                   o         |
|                  /=         |
|                 / o   y     |
|                / /=         |
|               / / o         |
|              / / /          |
|             / / /           |
|            / / /            |
|           / / /             |
|          / / /              |
|  x_1    o-/-/-----o  y_1    |
|          / /                |
|         / /                 |
|  x_2   o-/--------o  y_2    |
|         /                   |
|        /                    |
|  x_3  o-----------o  y_3    |
|                             |
o-----------------------------o

The Figure depicts a situation where each of the three objects, \(x_1, x_2, x_3,\!\) has a proper name that denotes it alone, namely, the three proper names \(y_1, y_2, y_3,\!\) respectively. Over and above the objects denoted by their proper names, there is the general sign \(y,\!\) which denotes any and all of the objects \(x_1, x_2, x_3.\!\) This kind of sign is described as a general name or a plural term, and its relation to its objects is a general reference or a plural denotation.

Now, at this stage of the game, if you ask: Is the object of the sign \(y\!\) one or many?, the answer has to be: Not one, but many. That is, there is not one \(x\!\) that \(y\!\) denotes, but only the three \(x\!\)'s in the object space. Nominal thinkers would ask: Granted this, what need do we have really of more excess? The maxim of the nominal thinker is never read a general name as a name of a general, meaning that we should never jump from the accidental circumstance of a plural sign \(y\!\) to the abnominal fact that a unit \(x\!\) exists.

In actual practice this would be just one segment of a much larger sign relation, but let us continue to focus on just this one piece. The association of objects with signs is not in general a function, no matter which way, from \(O\!\) to \(S\!\) or from \(S\!\) to \(O,\!\) that we might try to read it, but very often one will choose to focus on a selection of links that do make up a function in one direction or the other.

In general, but in this context especially, it is convenient to have a name for the converse of the denotation relation, or for any selection from it. I have been toying with the idea of calling this annotation, or maybe ennotation.

For example, the assignment of the general term \(y\) to each of the objects \(x_1, x_2, x_3\!\) is one such functional patch, piece, segment, or selection. So this patch can be pictured according to the pattern that was previously observed, and thus transformed by means of a canonical factorization.

In our example of a sign relation, we had a functional subset of the following shape:

o---------------------------------------o
|                                       |
|   Source O  :>  x_1 x_2 x_3           |
|          |       o   o   o            |
|          |        \  |  /             |
|       f  |         \ | /              |
|          |          \|/               |
|          v       ... o ...            |
|   Target S  :>       y                |
|                                       |
o---------------------------------------o

The function \(f : O \to S\) factors into a composition \(g \circ h,\!\) where \(g : O \to M,\) and \(h : M \to S,\) as shown here:

o---------------------------------------o
|                                       |
|   Source O  :>  x_1 x_2 x_3           |
|          |       o   o   o            |
|       g  |        \  |  /             |
|          |         \ | /              |
|          v          \|/               |
|   Medium M  :>   ... x ...            |
|          |           |                |
|       h  |           |                |
|          |           |                |
|          v       ... o ...            |
|   Target S  :>       y                |
|                                       |
o---------------------------------------o

The factorization of an arbitrary function into a surjective ("onto") function followed by an injective ("one-one") function is such a deceptively trivial observation that I had guessed that you would all wonder what in the heck, if anything, could possibly come of it.

What it means is that — without loss or gain of generality — we might as well assume that there is a domain of intermediate entities under which the objects of a general denotation can be marshalled, just as if they actually had something rather more essential and really more substantial in common than the shared attachment to a coincidental name. So the problematic status of a hypostatic entity like \(x\!\) is reduced from a question of its nominal existence to a matter of its local habitation. Is it more like an object or more like a sign? One wonders why there has to be only these two categories, and why not just form up another, but that does not seem like playing the game to propose it. At any rate, I will defer for now one other obvious possibility — obvious from the standpoint of the pragmatic theory of signs — the option of assigning the new concept, or mental symbol, to the role of an interpretant sign.

If we force the factored annotation function, initially extracted from the sign relation \(L,\!\) back into the frame from whence it came, we get the augmented sign relation \(L^\prime,\!\) shown in the next Figure:

o-----------------------------o
| Denotative Component of L'  |
o--------------o--------------o
|   Objects    |    Signs     |
o--------------o--------------o
|                             |
|                   o         |
|                  /=         |
|   x   o=o-------/-o   y     |
|       ^^^      / /=         |
|       '''     / / o         |
|       '''    / / /          |
|       '''   / / /           |
|       '''  / / /            |
|       ''' / / /             |
|       '''/ / /              |
|  x_1  ''o-/-/-----o  y_1    |
|       '' / /                |
|       ''/ /                 |
|  x_2  'o-/--------o  y_2    |
|       ' /                   |
|       '/                    |
|  x_3  o-----------o  y_3    |
|                             |
o-----------------------------o

This amounts to the creation of a hypostatic object \(x,\!\) which affords us a singular denotation for the sign \(y.\!\)

By way of terminology, it would be convenient to have a general name for the transformation that converts a bare, nominal sign relation like \(L\!\) into a new, improved hypostatically augmented or extended sign relation like \(L^\prime.\) Let us call this kind of transformation an objective extension or an outward extension of the underlying sign relation.

This naturally raises the question of whether there is also an augmentation of sign relations that might be called an interpretive extension or an inward extension of the underlying sign relation, and this is the topic that I will take up next.

Nominalism and Realism

Let me now illustrate what I think that a lot of our controversies about nominalism versus realism actually boil down to in practice. From a semiotic or a sign-theoretic point of view, it all begins with a case of plural reference, which happens when a sign \(y\!\) is quite literally taken to denote each object \(x_j\!\) in a whole collection of objects \(\{ x_1, \ldots, x_k, \ldots \},\) a situation that can be represented in a sign-relational table like this one:

o---------o---------o---------o
| Object  |  Sign   | Interp  |
o---------o---------o---------o
|   x_1   |    y    |   ...   |
|   x_2   |    y    |   ...   |
|   x_3   |    y    |   ...   |
|   ...   |    y    |   ...   |
|   x_k   |    y    |   ...   |
|   ...   |    y    |   ...   |
o---------o---------o---------o

For brevity, let us consider a sign relation \(L\!\) whose relational database table is precisely this:

o-----------------------------o
|       Sign Relation L       |
o---------o---------o---------o
| Object  |  Sign   | Interp  |
o---------o---------o---------o
|   x_1   |    y    |   ...   |
|   x_2   |    y    |   ...   |
|   x_3   |    y    |   ...   |
o---------o---------o---------o

For the moment, it does not matter what the interpretants are.

I would like to diagram this somewhat after the following fashion, here detailing just the denotative component of the sign relation, that is, the 2-adic relation that is obtained by "projecting out" the Object and Sign columns of the table.

o-----------------------------o
| Denotative Component of L   |
o--------------o--------------o
|   Objects    |    Signs     |
o--------------o--------------o
|                             |
|  x_1  o------>              |
|               \             |
|                \            |
|  x_2  o------>--o  y        |
|                /            |
|               /             |
|  x_3  o------>              |
|                             |
o-----------------------------o

I would like to — but my personal limitations in the Art of ASCII Hieroglyphics do not permit me to maintain this level of detail as the figures begin to ramify much beyond this level of complexity. Therefore, let me use the following device to symbolize the same configuration:

o-----------------------------o
| Denotative Component of L   |
o--------------o--------------o
|   Objects    |    Signs     |
o--------------o--------------o
|                             |
| o   o   o >>>>>>>>>>>> y    |
|                             |
o-----------------------------o

Notice the subtle distinction between these two cases:

  1. A sign denotes each object in a set of objects.
  2. A sign denotes a set of objects.

The first option uses the notion of a set in a casual, informal, or metalinguistic way, and does not really commit us to the existence of sets in any formal way. This is the more razoresque choice, much less risky, ontologically speaking, and so we may adopt it as our "nominal" starting position.

In this plural denotative component of the sign relation, we are looking at what may be seen as a functional relationship, in the sense that we have a piece of some function \(f : O \to S,\) such that \(f(x_1) =\!\) \(f(x_2) =\!\) \(f(x_3) = y,\!\) for example. A function always admits of being factored into an "onto" (surjective) map followed by a "one-to-one" (injective) map, as discussed earlier.

But where do the intermediate entities go? We could lodge them in a brand new space all their own, but Ockham the Innkeeper is right up there with Old Procrustes when it comes to the amenity of his accommodations, and so we feel compelled to at least try shoving them into one or another of the spaces already reserved.

In the rest of this discussion, let us assign the label \({}^{\backprime\backprime} i \, {}^{\prime\prime}\) to the intermediate entity between the objects \(x_j\!\) and the sign \(y.\!\)

Now, should you annex \(i\!\) to the object domain \(O\!\) you will have instantly given yourself away as having realist tendencies, and you might as well go ahead and call it an intension or even an Idea of the grossly subtlest Platonic brand, since you are about to booted from Ockham's Establishment, and you might as well have the comforts of your ideals in your exile.

o-----------------------------o
| Denotative Component of L'  |
o--------------o--------------o
|   Objects    |    Signs     |
o--------------o--------------o
|                             |
|     i                       |
|    /|\   *                  |
|   / | \       *             |
|  /  |  \           *        |
| o   o   o >>>>>>>>>>>> y    |
|                             |
o-----------------------------o

But if you assimilate \(i\!\) to the realm of signs \(S,\!\) you will be showing your inclination to remain within the straight and narrow of conceptualist or even nominalist dogmas, and you may read this \(i\!\) as standing for an intelligible concept, or an idea of the safely decapitalized, mental impression variety.

o-----------------------------o
| Denotative Component of L'' |
o--------------o--------------o
|   Objects    |    Signs     |
o--------------o--------------o
|                             |
| o   o   o >>>>>>>>>>>> y    |
|    .  .  .             '    |
|         . . .          '    |
|              ...       '    |
|                   .    '    |
|                       "i"   |
|                             |
o-----------------------------o

But if you dare to be truly liberal, you might just find that you can easily afford to accommmodate the illusions of both of these types of intellectual inclinations, and after a while you begin to wonder how all of that mental or ontological downsizing got started in the first place.

o-----------------------------o
| Denotative Component of L'''|
o--------------o--------------o
|   Objects    |    Signs     |
o--------------o--------------o
|                             |
|     i                       |
|    /|\   *                  |
|   / | \       *             |
|  /  |  \           *        |
| o   o   o >>>>>>>>>>>> y    |
|    .  .  .             '    |
|         . . .          '    |
|              ...       '    |
|                   .    '    |
|                       "i"   |
|                             |
o-----------------------------o

To sum up, we have recognized the perfectly innocuous utility of admitting the abstract intermediate object \(i,\!\) that may be interpreted as an intension, a property, or a quality that is held in common by all of the initial objects \(x_j\!\) that are plurally denoted by the sign \(y.\!\) Further, it appears to be equally unexceptionable to allow the use of the sign \({}^{\backprime\backprime} i \, {}^{\prime\prime}\) to denote this shared intension \(i.\!\) Finally, all of this flexibility arises from a universally available construction, a type of compositional factorization, common to the functional parts of the 2-adic components of any relation.

Document History

Nov 2000 — Factorization Issues

Standard Upper Ontology

  1. http://suo.ieee.org/email/msg02332.html
  2. http://suo.ieee.org/email/msg02334.html
  3. http://suo.ieee.org/email/msg02338.html
  4. http://suo.ieee.org/email/msg02340.html
  5. http://suo.ieee.org/email/msg02345.html
  6. http://suo.ieee.org/email/msg02349.html
  7. http://suo.ieee.org/email/msg02355.html
  8. http://suo.ieee.org/email/msg02396.html
  9. http://suo.ieee.org/email/msg02400.html
  10. http://suo.ieee.org/email/msg02430.html
  11. http://suo.ieee.org/email/msg02448.html

Ontology List

  1. http://suo.ieee.org/ontology/msg00007.html
  2. http://suo.ieee.org/ontology/msg00025.html
  3. http://suo.ieee.org/ontology/msg00032.html

Mar 2001 — Factorization Flip-Flop

Ontology List

  1. http://suo.ieee.org/ontology/msg01926.html
  2. http://suo.ieee.org/ontology/msg02008.html

Standard Upper Ontology

  1. http://suo.ieee.org/email/msg04334.html
  2. http://suo.ieee.org/email/msg04416.html

Apr 2001 — Factorization Flip-Flop

  1. http://stderr.org/pipermail/arisbe/2001-April/000408.html

Sep 2001 — Descartes' Factorization

Arisbe List

  1. http://stderr.org/pipermail/arisbe/2001-September/001053.html

Ontology List

  1. http://suo.ieee.org/ontology/msg03285.html

Nov 2001 — Factorization Issues

  1. http://suo.ieee.org/email/msg07143.html
  2. http://suo.ieee.org/email/msg07166.html
  3. http://suo.ieee.org/email/msg07182.html
  4. http://suo.ieee.org/email/msg07185.html
  5. http://suo.ieee.org/email/msg07186.html

Mar 2005 — Factorization Issues

  1. http://stderr.org/pipermail/inquiry/2005-March/002495.html
  2. http://stderr.org/pipermail/inquiry/2005-March/002496.html

May 2005 — Factorization And Reification

  1. http://stderr.org/pipermail/inquiry/2005-May/002747.html
  2. http://stderr.org/pipermail/inquiry/2005-May/002748.html
  3. http://stderr.org/pipermail/inquiry/2005-May/002749.html
  4. http://stderr.org/pipermail/inquiry/2005-May/002751.html

May 2005 — Factorization And Reification : Discussion

  1. http://stderr.org/pipermail/inquiry/2005-May/002758.html