Difference between revisions of "User:Jon Awbrey/SYMBOL"

MyWikiBiz, Author Your Legacy — Friday January 10, 2025
Jump to navigationJump to search
(→‎Character Codes: XML Unicode Database)
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
* [http://meta.wikimedia.org/wiki/Help:Displaying_a_formula Mathematical formulas]
 
* [http://meta.wikimedia.org/wiki/Help:Displaying_a_formula Mathematical formulas]
 
* [http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols Mathematical symbols]
 
* [http://en.wikipedia.org/wiki/Wikipedia:Mathematical_symbols Mathematical symbols]
 +
 +
==Character Codes==
 +
 +
* [http://www.nationalfinder.com/html/char-asc.htm HTML ASCII Characters]
 +
* [http://www.sql-und-xml.de/unicode-database/sm.html XML Unicode Database]
  
 
==Mathematical Symbols==
 
==Mathematical Symbols==
Line 24: Line 29:
 
It might be easier to just copy and paste the symbols instead of using them by reference.
 
It might be easier to just copy and paste the symbols instead of using them by reference.
  
==See also==
+
===See Also===
*The [[List of XML and HTML character entity references]] gives a longer list of HTML characters.
+
 
*[[Help:formula|TeX on Wikipedia]]
+
* The [[List of XML and HTML character entity references]] gives a longer list of HTML characters.
*[[Table of mathematical symbols]], [[Mathematical alphanumeric symbols]]
+
 
*[[MathML|Mathematical Markup Language]]
+
* [[Help:formula|TeX on Wikipedia]]
 +
 
 +
* [[Table of mathematical symbols]], [[Mathematical alphanumeric symbols]]
 +
 
 +
* [[MathML|Mathematical Markup Language]]
 +
 
 +
===External Links===
 +
 
 +
* [http://www.math.uh.edu/~hjm/HTML%20Tag%20List.htm List of HTML codes]
  
==External links==
+
* [http://www.cookwood.com/html/extras/entities.html List of HTML entity codes]
*[http://www.math.uh.edu/~hjm/HTML%20Tag%20List.htm List of HTML codes]
+
* [http://www.nationalfinder.com/html/char-asc.htm Hypertext Markup Language ASCII codes]
*[http://www.cookwood.com/html/extras/entities.html List of HTML entity codes]
+
* [http://www.sql-und-xml.de/unicode-database/sm.html Huge collection of symbols], most of which probably do not work on many web browsers.  
*[http://www.nationalfinder.com/html/char-asc.htm Hypertext Markup Language ASCII codes]
+
* [http://www.unicode.org/charts/charindex.html Unicode character name index] — finds the Unicode number of a character.
*[http://www.sql-und-xml.de/unicode-database/sm.html Huge collection of symbols], most of which probably do not work on many web browsers.  
+
* [http://www.w3.org W3C] list of MathML characters indexed by [http://www.w3.org/TR/MathML2/bycodes.html code] or [http://www.w3.org/TR/MathML2/byalpha.html name]
*[http://www.unicode.org/charts/charindex.html Unicode character name index] — finds the Unicode number of a character.
 
*[http://www.w3.org W3C] list of MathML characters indexed by [http://www.w3.org/TR/MathML2/bycodes.html code] or [http://www.w3.org/TR/MathML2/byalpha.html name]
 
 
<br>
 
<br>
  
Line 46: Line 57:
 
| &amp;middot;
 
| &amp;middot;
 
| &middot;
 
| &middot;
 +
|-
 +
| <nowiki>'''&amp;middot;'''</nowiki>
 +
| '''&middot;'''
 +
|-
 +
| <nowiki><code>&amp;middot;</code></nowiki>
 +
| <code>&middot;</code>
 +
|-
 +
| <nowiki><code>'''&amp;middot;'''</code></nowiki>
 +
| <code>'''&middot;'''</code>
 
|-
 
|-
 
| &amp;sdot;
 
| &amp;sdot;
 
| &sdot;
 
| &sdot;
 +
|-
 +
| <nowiki>'''&amp;sdot'''</nowiki>
 +
| '''&sdot;'''
 +
|-
 +
| <nowiki><code>&amp;sdot;</code></nowiki>
 +
| <code>&sdot;</code>
 +
|-
 +
| <nowiki><code>'''&amp;sdot;'''</code></nowiki>
 +
| <code>'''&sdot;'''</code>
 
|-
 
|-
 
| &amp;bull;
 
| &amp;bull;
Line 59: Line 88:
 
| &loz;
 
| &loz;
 
|-
 
|-
| <nowiki>{{unicode|&middot;}}</nowiki>
+
| <nowiki>{{unicode|&amp;middot;}}</nowiki>
 
| {{unicode|&middot;}}
 
| {{unicode|&middot;}}
 
|-
 
|-
| <nowiki>{{unicode|&sdot;}}</nowiki>
+
| <nowiki>{{unicode|&amp;sdot;}}</nowiki>
 
| {{unicode|&sdot;}}
 
| {{unicode|&sdot;}}
 
|-
 
|-
| <nowiki>{{unicode|&bull;}}</nowiki>
+
| <nowiki>{{unicode|&amp;bull;}}</nowiki>
 
| {{unicode|&bull;}}
 
| {{unicode|&bull;}}
 
|-
 
|-
| <nowiki>{{unicode|&lowast;}}</nowiki>
+
| <nowiki>{{unicode|&amp;lowast;}}</nowiki>
 
| {{unicode|&lowast;}}
 
| {{unicode|&lowast;}}
 
|-
 
|-
| <nowiki>{{unicode|&loz;}}</nowiki>
+
| <nowiki>{{unicode|&amp;loz;}}</nowiki>
 
| {{unicode|&loz;}}
 
| {{unicode|&loz;}}
 
|-
 
|-

Latest revision as of 15:24, 27 October 2008

Formula Help

Character Codes

Mathematical Symbols

This page is a quick reference for the "standard" mathematical symbols in HTML that should work on most browsers, and is intended mainly for people editing mathematical articles on Wikipedia.

  • Numbers: Template:Unicode &frac14; &frac12; &frac34; &sup1; &sup2; &sup3;
  • Analysis: Template:Unicode &part; &int; &sum; &prod; &radic; &infin; &nabla; &weierp; &image; &real;
  • Arrows: Template:Unicode &larr; &darr; &rarr; &uarr; &harr; &crarr; &lArr; &dArr; &rArr; &uArr; &hArr;
  • Logic: Template:Unicode &not; &and; &or; &exist; &forall;
  • Sets: Template:Unicode &isin; &notin; &ni; &empty; &sube; &supe; &sup; &sub; &nsub; &cup; &cap; &alefsym;
  • Relations: Template:Unicode &ne; &le; &ge; &lt; &gt; &equiv; &cong; &asymp; &prop;
  • Binary operations: Template:Unicode &plusmn; &minus; &times; &divide; &frasl; &perp; &oplus; &otimes; &lowast;
  • Delimiters: Template:Unicode &lceil; &rceil; &lfloor;&rfloor; &lang; &rang; &laquo; &raquo;
  • Miscellaneous: Template:Unicode &dagger; &brvbar; &ang; &there4; &loz; &bull; &spades; &clubs; &hearts; &diams;
  • Punctuation: Template:Unicode &prime; &Prime; &oline; &circ; &deg; &sdot; &middot; &hellip; &ndash; &mdash;
  • Spacing: thin ( ), n-width ( ), m-width ( ), and non-breaking spaces ( ). &thinsp; &ensp; &emsp; &nbsp;
  • Greek: α β γ Α Β Γ etc. &alpha; &beta; &gamma; &Alpha; &Beta; &Gamma; etc.
  • Unicode: &#x22A2; (for example) gives the character ⊢ with unicode number x22A2 (hexadecimal). Warning: many of the more obscure unicode characters do not yet work on all browsers.

It might be easier to just copy and paste the symbols instead of using them by reference.

See Also

External Links


Bytes & Parses

&middot; ·
'''&middot;''' ·
<code>&middot;</code> ·
<code>'''&middot;'''</code> ·
&sdot;
'''&sdot'''
<code>&sdot;</code>
<code>'''&sdot;'''</code>
&bull;
&lowast;
&loz;
{{unicode|&middot;}} Template:Unicode
{{unicode|&sdot;}} Template:Unicode
{{unicode|&bull;}} Template:Unicode
{{unicode|&lowast;}} Template:Unicode
{{unicode|&loz;}} Template:Unicode
\(\cdot\) \(\cdot\)
\(\cdot\!\) \(\cdot\!\)
 
&isin;
&epsilon; ε
\(\in\) \(\in\)
\(\in\!\) \(\in\!\)
\(\epsilon\) \(\epsilon\)
\(\epsilon\!\) \(\epsilon\!\)
\(\varepsilon\) \(\varepsilon\)
\(\varepsilon\!\) \(\varepsilon\!\)
 
&eta; η
\(\eta\) \(\eta\)
\(\eta\!\) \(\eta\!\)
 
&theta; θ
\(\theta\) \(\theta\)
\(\theta\!\) \(\theta\!\)
\(\vartheta\) \(\vartheta\)
\(\vartheta\!\) \(\vartheta\!\)
 
&chi; χ
\(\chi\) \(\chi\)
\(\chi\!\) \(\chi\!\)


x = xJ = ¢(J) = J¢ = J ¢ = J¢ = J ¢

x = xJ = ¢(J) = J¢ = J ¢ = J¢ = J ¢

Display

New

W : ( [ Bn ] [ Bk ] )     ( [ Bn × Dn ] [ Bk × Dk ] ) .
Concrete type \(\epsilon\) : ( U X ) ( EU X )
Abstract type \(\epsilon\) : ( [Bn] [Bk] ) ( [Bn × Dn] [Bk] )
Concrete type W : ( U X ) ( EU dX )
Abstract type W : ( [Bn] [Bk] ) ( [Bn × Dn] [Dk] )
\(\epsilon\)F : ( EU X EX ) \(\cong\) ( [Bn × Dn] [Bk] [Bk × Dk] )
WF : ( EU dX EX ) \(\cong\) ( [Bn × Dn] [Dk] [Bk × Dk] )

Old

W : ( [ Bn ] [ Bk ] )     ( [ Bn × Dn ] [ Bk × Dk ] ) .
Concrete type \(\epsilon\) : ( U X ) ( EU X )
Abstract type \(\epsilon\) : ( [Bn] [Bk] ) ( [Bn × Dn] [Bk] )
Concrete type W : ( U X ) ( EU dX )
Abstract type W : ( [Bn] [Bk] ) ( [Bn × Dn] [Dk] )
\(\epsilon\)F : ( EU X EX ) \(\cong\) ( [Bn × Dn] [Bk] [Bk × Dk] )
WF : ( EU dX EX ) \(\cong\) ( [Bn × Dn] [Dk] [Bk × Dk] )

Epitext

Rosebud
Rosebud
Rosebud

Gallery

‹ ›

〈 〉

( )

( , )


A = {ai} = {a1, …, an}
A = 〈A〉 = 〈a1, …, an〉= {‹a1, …, an›}
A^ = (A → B)
A = [A] = [a1, …, an]


dA = {dai} = {da1, …, dan}
dA = 〈dA〉 = 〈da1, …, dan〉= {‹da1, …, dan›}
dA^ = (dA → B)
dA = [dA] = [da1, …, dan]


EA = A ∪ dA = {ai} ∪ {dai} = {a1, …, an, da1, …, dan}
EA = 〈EA〉 = 〈a1, …, an, da1, …, dan〉= {‹a1, …, an, da1, …, dan›}
EA^ = (EA → B)
EA = [EA] = [a1, …, an, da1, …, dan]


X = {xi} = {x1, …, xn}
X = 〈X〉 = 〈x1, …, xn〉= {‹x1, …, xn›}
X^ = (X → B)
X = [X] = [x1, …, xn]


dX = {dxi} = {dx1, …, dxn}
dX = 〈dX〉 = 〈dx1, …, dxn〉= {‹dx1, …, dxn›}
dX^ = (dX → B)
dX = [dX] = [dx1, …, dxn]


X = {xi} = {x1, …, xn}
X = 〈X〉 = 〈x1, …, xn〉= {‹x1, …, xn›}
X^ = (X → B)
X = [X] = [x1, …, xn]


f : Bk → B

f : Bn → B

f–1

Pow(X) = 2X

Arbitrary Bn → B X → B
Basic ¸> Bn ¸> B X ¸> B
Linear +> Bn +> B X +> B
Positive ¥> Bn ¥> B X ¥> B
Singular ××> Bn ××> B X ××> B

The linear propositions, {hom : Bn → B} = (Bn +> B), may be expressed as sums of the following form:

\[\textstyle \sum_{i=1}^n e_i = e_1 + \ldots + e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 0.\]

The positive propositions, {pos : Bn → B} = (Bn ¥> B), may be expressed as products of the following form:

\[\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 1.\]

The singular propositions, {x : Bn → B} = (Bn ××> B), may be expressed as products of the following form:

\[\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = (a_i) = \lnot a_i.\]

I = {1, …, n}.

JI

J ⊆ I

AJ

AJ

lJ : Bk → B

\(\ell_J : \mathbb{B}^k \to \mathbb{B}\)

θ : (Kn → K) → K

\(\theta\) : (Kn → K) → K

\(\theta\!\) : (Kn → K) → K

\(\vartheta\) : (Kn → K) → K

\(\vartheta\!\) : (Kn → K) → K

\(\chi\!\) : X → \(\bigcup_x \ \chi_x\!\)

\(\chi\!\) : Kn → ((Kn → K) → K)

\(\chi\!\) : (Kn → K) → (Kn → K)

\(\cong\)

\(\lceil x \rceil\)

xi(x) χ(xLi) \(\lceil x \in L_i \rceil\) Li(x)
xi(x) \(\chi (x \in L_i)\) \(\lceil x \in L_i \rceil\) Li(x)
‹0, 0, 0› ‹0, 0, 0›
‹0, 0, 1› ‹0, 0, 1›
‹0, 1, 0› ‹0, 1, 0›
‹0, 1, 1› ‹0, 1, 1›
‹1, 0, 0› ‹1, 0, 0›
‹1, 0, 1› ‹1, 0, 1›
‹1, 1, 0› ‹1, 1, 0›
‹1, 1, 1› ‹1, 1, 1›